Packet Video Workshop San Jose, December, 2013

K. Miller¹, N. Corda², S. Argyropoulos², A. Raake², A. Wolisz¹

1) Berlin Institute of Technology, Berlin, Germany
2) Telekom Innovation Laboratories (T-Labs), Berlin, Germany

OPTIMAL ADAPTATION TRAJECTORIES FOR BLOCK-REQUEST ADAPTIVE VIDEO STREAMING

Outline

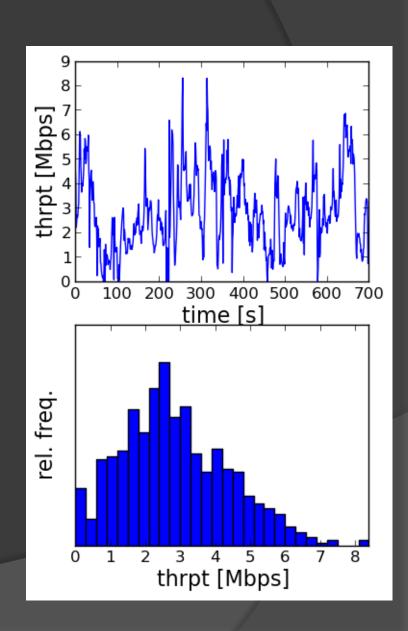
- Motivation
- Problem formulation
- Approach
- Evaluation

Adaptive Video Streaming

- Cisco forecast: video will be 80 % 90 % of total consumer traffic in 2017
- Huge heterogeneity of terminal devices
 - Screen sizes, screen resolutions, CPU power, battery capacity
- Huge heterogeneity of network conditions
 - Throughput from 10 kbps to 10 Mbps and more
 - Packet loss rate from 0 to 10 % and more
 - Latency from 1 ms to 1 s and more

Adaptation necessary

Adaptive Video Streaming


- Network conditions change dynamically
 - Cross-traffic
 - Mobility
 - Outdoor/indoor, overground/underground
 - Changing distance to base station
 - Changing environment geometry
- Continuous dynamic adaptation required, e.g.,
 - Adaptation of video bit-rate
 - Adaptation of other encoding parameters
 - Example: GOP size to loss rate
 - 0 ...

State-of-the-Art

- Block-request adaptive streaming
 - Stateless server, e.g., HTTP
 - Client requests chunks of video data
 - Chunk representation selected dynamically
 - Based on network conditions, etc.
- Standards: MPEG-DASH, HLS (draft), etc.
- Popular commercial implementations
 - Microsoft SmoothStreaming (proprietary)
 - Apple QuickTime, iOS (HLS)
 - Adobe HTTP Dynamic Streaming (proprietary)

Adaptation strategies

- Adaptation strategy is essential for QoE
- Challenge: random throughput, high variance (esp. wireless networks)
- Conflicting objectives
 - Avoid underruns
 - Max. average media bit-rate
 - Min. quality jumps
 - Min. start-up delay

Problem: How to evaluate adaptation strategies?

- Compare to predefined requirements
 - No predefined requirements: best-effort
 - User's expectations depend on many factors
 - Age, affinity to technology, viewing context, etc.
- Compare to state-of-the-art solution
 - No widely accepted state-of-the-art clients/benchmarks
- Compare to optimum
 - Calculate optimal adaptation trajectories for given network conditions

Approach

Approach and application

- Calculate optimal adaptation trajectories, given
 - Throughput over time
 - Segment size and representation information
- Application scenario I
 - Record clients throughput over time
 - Calculate optimum and compare
 - Difficulty: client might introduce delays between requests
 - → Potential loss of optimality
- Application scenario II
 - Rerun continuous TCP flow under same conditions
 - Calculate optimum and compare
 - Multiple runs to account for randomness

Further applications

- Evaluate influence of various factors on achievable performance
- Influence of video parameters
 - Number and bit-rates of representations
 - Segment duration
 - •
- Influence of network parameters
 - QoS: Throughput, packet loss, latency
 - MAC strategy
 - TCP flavor
 - ...

Optimality metric

- Ultimate goal: optimize QoE
- Factors that influence QoE
 - Re-buffering duration and distribution over time
 - Average quality over chunks, minimum quality
 - Number of quality switches and distrib. over time
 - Start-up delay
- No unifying QoE metric exists so far
- Our optimization objectives and constraints
 - No re-buffering
 - Maximum average video bit-rate
 - Minimum number of switches

two step approach

Start-up delay is configuration parameter

Step 1: Average bit-rate maximization

- Given
 - Throughput over time V(t)
 - Desired start-up delay
- Objective: maximize average video bit-rate
- Additional constraint: no buffer underruns

(OP1) max
$$\sum_{i=1}^{n} \sum_{j=1}^{m} S_{ij} x_{ij}$$

$$S.t. \sum_{j=1}^{m} x_{ij} \ge 1$$
 for all $i = 1, ..., n$
$$\sum_{i=1}^{k} \sum_{j=1}^{m} S_{ij} x_{ij} \le V(D_k)$$
 for all $k = 1, ..., n$

i = 1, ..., n - segments j = 1, ..., m - representations S_{ij} - segment size D_i - playback deadline x_{ij} - download i from j

- MCNKP
- NP-hard
- Pseudo-polyn.
- Solution: seconds (Gurobi)

Step 2: Quality switches minimization

- ullet Given: as in step 1 plus optimal average quality V^*
- Objective: minimize number of switches
- Constraint: same as step 1 plus average quality equal to optimum

(OP2) min
$$\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=1}^{m} (x_{ij} - x_{i+1,j})^2$$
 $\begin{cases} D_i - 1 \\ x_{ij} - 0 \\ V^* - 1 \end{cases}$ s.t. $\sum_{j=1}^{m} x_{ij} \ge 1$ for all $i = 1, ..., n$ $\sum_{i=1}^{k} \sum_{j=1}^{m} S_{ij} x_{ij} \le V(D_k)$ for all $k = 1, ..., n$ $\sum_{i=1}^{n} \sum_{j=1}^{m} S_{ij} x_{ij} \ge V^*$

i = 1, ..., n - segments j = 1, ..., m - representations S_{ij} - segment size D_i - playback deadline x_{ij} - download i from j V^* - optimum val. of (OP1)

- Quadratic MCNKP
- Solution: minutes (Gurobi)

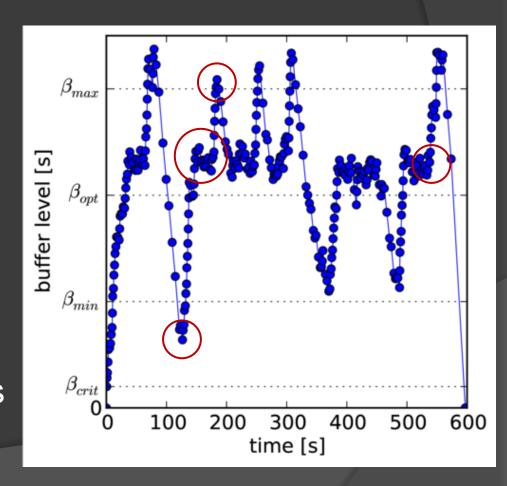
Evaluation

Previous work: adaptation strategy

- DASH does not specify adaptation strategy
- Developed own algorithm (impl. as plugin for VLC)

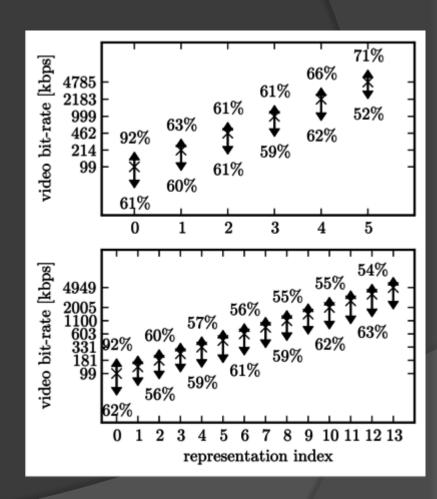
$$\bullet$$
 $\beta < \beta_{min} \land \beta' < 0 \Rightarrow$

$$\bullet$$
 $\beta > \beta_{max} \wedge \beta' > 0$


•
$$r^{\uparrow} < \alpha \rho$$
 $\Rightarrow \nearrow$

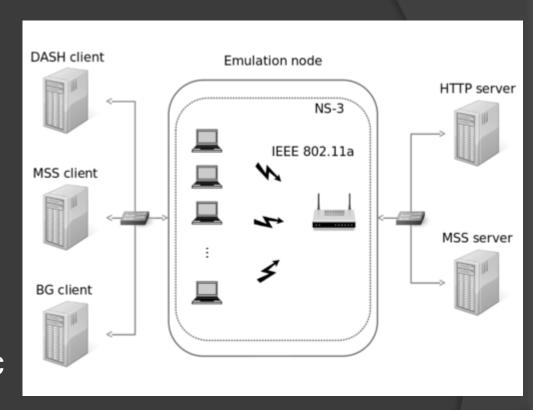
•
$$r^{\uparrow} \ge \alpha \rho$$
 $\Rightarrow \xi$

$$\bullet \ \beta > \beta_{opt} \land r^{\uparrow} \geq \alpha \rho \quad \Rightarrow \xi$$


$$\bullet$$
 $\beta < \beta_{crit}$ $\Rightarrow \downarrow \downarrow$

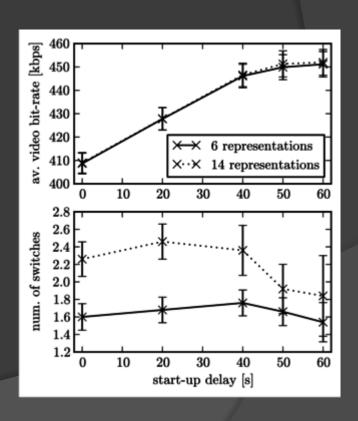
- + aggressive at start-up
- + some additional tweaks
- In total: 10 parameters

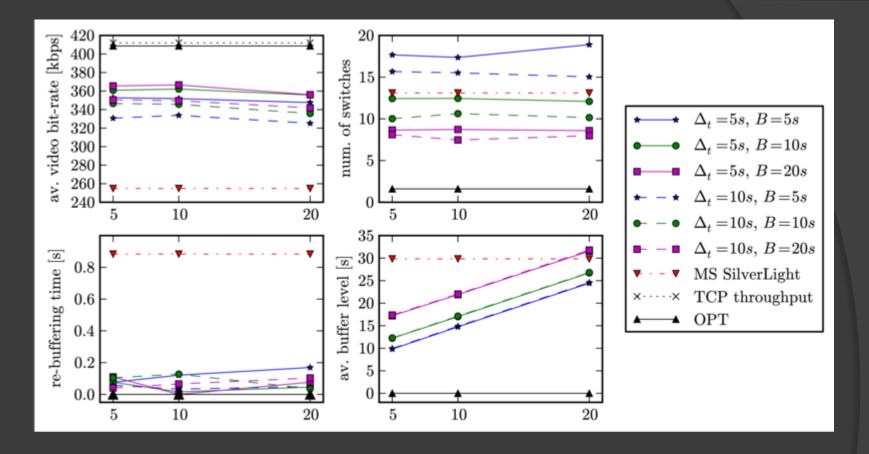
Video used for evaluation


- Big Buck Bunny (animated)
 - 598 seconds
- Encoded in 6 and 14 representations
 - 299 segments, 2 sec. each
 - Bit-rates logarithmically from 100 kbps to 5 Mbps
 - Kept bit-rates fluctuations low
 - 2 manifests and container formats: DASH and MSS
- Low fluctuation amplitude is important if segment size not known in advance

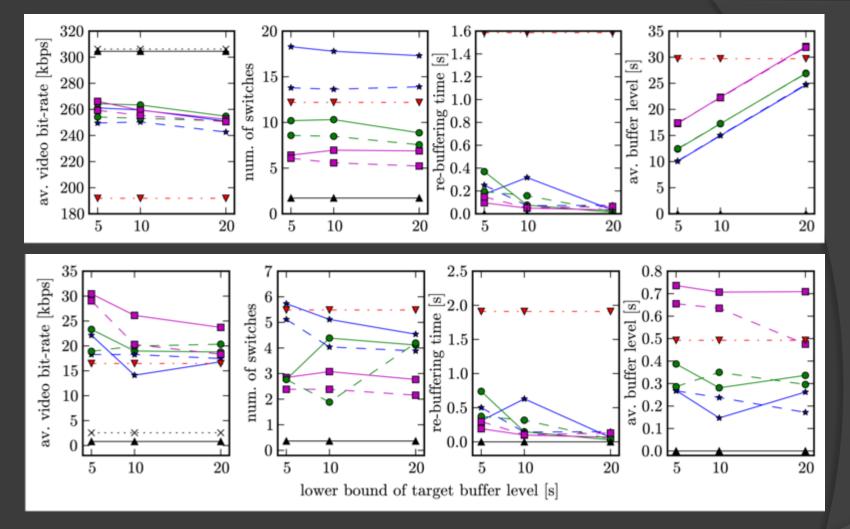
(Note the log y-axis)

Evaluation setting


- 802.11a model based on BOWL indoor testbed (7 stations)
- Max. TCP throughput:1.4, 1.7, 19, 19, 21, 21,21 Mbps
- Second slowest selected for video traffic



- 14 synthetic HTTP clients as cross-traffic (Pries et al.)
 - 2 on each wireless station
 - Detailed model: experimentally fitted distributions for
 - User activity, main object sizes, secondary object sizes, interobject intervals, etc.


Results: influence of video parameters

- Influence of number of video representations
- Influence of start-up delay
- 6 representations sufficient
- Num. switches surprisingly low (here: upper bounds)
- Start-up delay has little influence
 - Approx. 12 % for 60 s

- OPT utilize almost 100% of TCP's fair share
- OPT has 0 re-buffering, very little switches, almost 0 buffer level
- DASH av. video bit-rate: 78% to 90% of OPT, MSS: 62%
- Num. of switches, re-buffering: DASH is better or comparable
- DASH has lower avg. buffer level → better for live content
- Good DASH configuration: $\beta_{min} = 10s$, B = 20s, $\Delta_t = 5s$

- Two clients on same wireless stations (backgr. as before)
- Differences between two clients, averaged over runs
- Good fairness w.r.t. avg. bit-rate, re-buffering, buffer level
- Medium fairness w.r.t. number of switches

Conclusion

- Optimal adaptation trajectories allow to
 - Benchmark adaptation strategies
 - Study influence of network and video parameters
- Potential extensions
 - Optimize w.r.t. QoE metric, once available
- Evaluation
 - DASH comparable or better in studied setting
 - DASH achieves 78% to 90% of optimum

THE END

References

- "Cisco Visual Networking Index: Forecast and Methodology, 2012 -2017," Cisco, White Paper, 2013.
- R. Pries, Z. Magyari, and P. Tran-Gia, "An HTTP Web Traffic Model Based On the Top One Million Visited Web Pages," in Proc. of NGI, Karlskrona, Sweden, 2012.
- R. D. Armstrong, P. Sinha, and A. A. Zoltners, "The Multiple-Choice Nested Knapsack Model," Management Science, vol. 28, no. 1, pp. 34– 43, 1982.
- M. Al-Bado, C. Sengul, and R. Merz, "What Details Are Needed For Wireless Simulations? - A Study of a Site-Specific Indoor Wireless Model," in Proc. of INFOCOM, 2012.
- MPEG-DASH plugin for VLC, developed at TUB, Berlin, Germany, http://konstantinmiller.github.io/dashp2p/