

Circuit Breakers for Multimedia Congestion Control

Varun Singh Aalto University

Stephen McQuistin, Martin Ellis, and Colin Perkins University of Glasgow

Context

• Video conferencing seeing increasing deployment

- Still no standard congestion control algorithm for RTP traffic running over UDP/IP
 - Various proprietary algorithms
 - IETF RMCAT working group
 - Potential congestion collapse

• Circuit breaker algorithm wanted to stop errant flows

Example Scenario: WebRTC

- High-rate RTP media data flow
- Low-rate RTCP reception quality feedback

RTCP Reception Quality Feedback

- Reporting interval: O(seconds)
- Timing statistics
 - Inter-arrival jitter
 - One RTT estimate per reporting interval
- Packet loss statistics
 - Fraction packets lost in last interval
 - Cumulative number of lost packets
 - Highest sequence number received

	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+						
header	V=2 P RC PT=RR=201 length +-+++++++++++++++++++++++++++++++++++						
	SSRC of packet sender +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=						
report block	SSRC_1 (SSRC of first source)						
1 1	fraction lost cumulative number of packets lost						
	extended highest sequence number received						
	interarrival jitter						
	last SR (LSR)						
	delay since last SR (DLSR)						
report block	SSRC_2 (SSRC of second source) +-+-+++++++++++++++++++++++++++++++++						
2	: : +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=						

• Reception quality feedback is infrequent and highly aggregated

RTP Circuit Breaker Algorithms

- Monitor reception quality of RTP media traffic to detect excessive network congestion
 - Use standard RTP and RTCP mechanisms
 - Must work with unmodified RFC3550-compliant receivers
- Three circuit breakers:
 - Media timeout
 - RTCP timeout
 - Congestion

RTP Circuit Breaker Algorithms

- Circuit breaker #1: Media timeout
 - RTP data packets being sent, but corresponding RTCP RR packets report non-increasing extended highest sequence number received
 - Indication of significant forward-path connectivity problem if persistent for ≥ 2 reporting intervals → cease transmission

- Circuit breaker #2: RTCP timeout
 - RTP data packets being sent, but no corresponding RTCP RR packets returned for ≥ 2 consecutive reporting intervals → cease transmission
 - Indicates significant return-path connectivity problem

RTP Circuit Breaker Algorithms

- Circuit breaker #3: Congestion
 - RTP data sent, corresponding RR packets have increasing extended highest sequence number received, but non-zero packet loss fraction
 - Indication of network congestion estimate equivalent TCP throughput:

$$T = \frac{s}{R\sqrt{\frac{2p}{3}} + (t_{RTO}(3\sqrt{\frac{3p}{8}})p(1+32p^2))}}$$

$$R = \text{round trip time, } s = \text{packet size}$$

$$p = \text{packet loss event rate}$$

and cease transmission if RTP sending rate $\geq 10T$ for 2 reporting intervals

- Poor quality inputs simplify by setting highlighted term to zero
- Not a robust estimate of TCP throughput is it good enough for a circuit breaker?

Testbed Experiments

 Initial experiments: does circuit breaker behave as expected in simple environments?

- Evaluate using gstreamer + x264, Akiyo video sequence, VGA size video at 15fps with 1Mbps target rate; multiple 100 second runs
- Basic network testbed: simple bottleneck with variable queue, latency, available bandwidth

Impact of Bottleneck Link Parameters

 See paper for full details – circuit breaker behaves as expected with changing bottleneck link characteristics

Impact of TCP Cross Traffic

- 3Mbps bottleneck, 1 RTP flow at 1Mbps, short (sq) or bloated (bb) 5s queue
- 40 short TCP flows modelling web traffic *or* 4 long duration TCP flows
- Short TCP flows aggressive due to slow start; buffer bloated queues decrease responsiveness, trigger circuit breaker – as expected, over-buffering affects TCP dynamics

Performance on Residential Links

- Captured RTP packet traces to residential users
 - CBR traffic flows; range of bit rates (1–8.5Mbps); 1–10 minute duration
 - Well-connected server; clients on standard home ADSL and cable modem links in the UK and Finland
 - 3833 traces containing ~230,000,000 packets
- Simulated RTCP matching the RTP packet traces
 - Assume reliable delivery of RTCP

Explore effectiveness of congestion circuit breaker

Distribution of Traces by Loss Rate

- Circuit breaker triggers in 164 traces out of 3833
- Overall packet loss rate a poor predictor of whether circuit breaker will trigger

Circuit Breaker Triggers by Loss Pattern

- Categorised packet traces according to RFC 3611 burst loss metric
 - 42% traces are loss free
 - 23% traces have non-bursty loss
 - 35% traces have bursty loss

"A burst is a period during which a high proportion of packets are either lost or discarded due to late arrival. A burst is defined, in terms of a value Gmin, as the longest sequence that (a) starts with a lost or discarded packet, (b) does not contain any occurrences of Gmin or more consecutively received (and not discarded) packets, and (c) ends with a lost or discarded packet." – where the recommended value of Gmin = 16

 All packet traces triggering the RTP circuit breaker have bursty loss

Loss Pattern	Triggered	Did not trigger
Loss free Non-bursty loss Bursty loss	$0.0\% \\ 0.0\% \\ 12.2\%$	100.0% 100.0% 87.8%

- Example circuit breaker trigger:
 - 10 second period with 4% avg. packet loss
 - 2–3 reporting intervals

Circuit Breaker Triggers by Sending Rate

- Likelihood of triggering circuit breaker increases with sending rate
- Most likely to trigger circuit breaker when sending rate is close to edge link capacity

• Results consistent with circuit breaker triggering due to edge congestion

	Sending Data Rate (Mbps)						
Link	1.0	2.0	4.0	5.0	6.0	8.5	
ads11	0%	0%	9%	-	38%	-	
ads12	0%	0%	-	-	-	-	
ads13	0%	0%	-	-	-	-	
adsl4	0%	0%	0%	6%	0%		
ads15	0%	0%	0%	7%	27%	-	
ads16	0%	0%	19%	0%	52%		
adsl7	2%	9%	-	29%	-	-	
cable1	0%	20%	-	-	-	-	
cable2	0%	0%	0%	4%	8%	17%	
cable3	0%	0%	-	18%	-	-	
cable4	0%	0%	-	2%	-	-	
cable5	0%	0%	-	2%	-	-	
finads10	0%	0%	-	2%	-		
fincable0	0%	4%	-	100%	-	-	

Fraction of traces triggering circuit breaker (bars show negotiated rate of edge link)

Impact of Circuit Breaker Parameters

- Choice of TCP throughput model:
 - Use full TCP model, rather than the simplified TCP model
 - Num. flows triggering with bursty loss increases: $12.2\% \rightarrow 19.3\%$
 - Significant number of low-rate flows trigger this circuit breaker → overly sensitive to transient congestion

	Sending Data Rate (Mbps)					
Link	1.0	2.0	4.0	5.0	6.0	8.5
adsl1	0%	1%	14%	-	42%	_
adsl2	0%	0%	-	-	-	-
adsl3	0%	0%	-	-	-	-
adsl4	3%	5%	0%	26%	0%	-
adsl5	0%	4%	7%	20%	31%	-
adsl6	0%	1%	26%	0%	56%	-
adsl7	<mark>10%</mark>	<mark>9%</mark>	-	29%	-	-
cable1	0%	33%	-	-	-	-
cable2	0%	0%	0%	6%	8%	21%
cable3	<mark>18%</mark>	<u>13%</u>	-	29%	-	-
cable4	2%	0%	-	2%	-	-
cable5	2%	0%	-	4%	-	-
finads10	0%	0%	-	6%	-	-
fincable0	<mark>16%</mark>	<mark>16%</mark>	-	100%	-	-

Number of RTCP reporting intervals to trigger:

- Trigger after 3 reporting intervals gives slight reduction in number of traces triggering circuit breaker: $12.2\% \rightarrow 10.1\%$ of bursty traces
- No significant impact on low-rate traces

Conclusions

- Proposed RTP circuit breaker based on reachability and TCP-friendly throughput
 - Baseline RTP provides insufficient information for accurate TCP-friendly rate estimation; RTCP XR extensions can correct this in future systems
 - Circuit breaker adopts low-complexity approximations
- Trace-drive simulations show RTP circuit breaker triggering correctly for streaming to residential links
 - Might consider increasing to three reporting intervals before triggering
 - Ongoing work considering other network environments, more detailed analysis of circuit breaker triggers in this environment