Cross Segment Decoding of HEVC for Network Video Applications

Jiangtao Wen, Bohan Li, Shunyao Li, Yao Lu, Pin Tao
Motivations

- Decoders - more computational and storage capabilities
- Encoders – low complexity, low power
 - Not all tools are supported or properly
 - Rate allocation issues lead to sub-optimal bitrate allocations and quality variations
- Adaptive streaming
 - Rate variations caused quality variations
- Work in progress
Fig. 3: Two Frames of Almost Identical Size after Compression but Different Quality. Variations in Video Complexity and Uniformly Distributed Bitrate Result in Significant Variation of Quality over Time.
Fig. 3: Two Frames of Almost Identical Size after Compression but Different Quality. Variations in Video Complexity and Uniformly Distributed Bitrate Result in Significant Variation of Quality over Time.
Varying Bitrate Adaptive Streaming

- The one of the two thresholds of (3) and (4) that leads to a larger number of patches designated as "matched" should be used to maximize the benefit of the presence of the GF.
- The value of the thresholds should be determined by the temporal similarity between GF and SF before encoding (hence the MECost in (4)), as well as the loss of fidelity after encoding (therefore the PSNR in (3)).
- The PSNR value for the SF after IDR encoding can be embedded into the HEVC bitstream (e.g. as SEI information or user data) by the encoder using 16 bits. The PSNR could also be estimated by using techniques such as that in [26] without data embedding.

C. High Motion Area Enhancement

Motion information was required in the enhancement of the high motion areas SF^hi with reference to the GF. In our experiments, we simply re-used the MVs obtained in the decoder ME process between the...
Varying Bitrate Adaptive Streaming

The one of the two thresholds of (3) and (4) that leads to a larger number of patches designated as "matched" should be used to maximize the benefit of the presence of the GF.

The value of the thresholds should be determined by the temporal similarity between GF and SF before encoding (hence the \text{MECost} in (4)), as well as the loss of fidelity after encoding (therefore the PSNR in (3)).

The PSNR value for the SF after IDR encoding can be embedded into the HEVC bitstream (e.g. as SEI information or user data) by the encoder using 16 bits. The PSNR could also be estimated by using techniques such as that in [26] without data embedding.

The pseudo code for the enhancement algorithm for low motion areas is given in Algorithm 1.

C. High Motion Area Enhancement

Motion information was required in the enhancement of the high motion areas SF\textsubscript{hi} with reference to the GF. In our experiments, we simply re-used the MVs obtained in the decoder ME process between the
Algorithm Overview

- Key idea: use information that the decoder has but was not (fully) used by the encoder for enhancement

- Terminology:
 - Good Frame: last frame in good quality segment
 - Start Frame: first frame in poor quality segment
 - Fresh Start: Start Frame after enhancement

- Three steps:
 - Segmentation of the SF into high and low motion areas
 - Enhance high and low motion areas with different algorithms
 - Replace SF with FS, continue decoding
Motion Segmentation

- Motion estimation between the GF and SF at the decoder using 4x4 patches.

- A patch (patch size varies from 4x4 to 32x32) is designated as high motion if the average MV length is higher than a threshold of $width \times QP/30000$. Low motion otherwise.
Low Motion Enhancement

- For each Patch P designated as low motion, find the co-located Patch P' in the GF.

- Calculate the MSD between P and P'.
 - Replace P with P' if the MSD if below a threshold.
 - Threshold was set to the larger of the following two values:

$$Th_1 = 1.112 \times e^{(-0.2963 \times PSNR + 15.14)} - 10.21$$

and

$$Th_2 = 6.213 \times MECost^{1.348}$$

where

$$MECost = \frac{\sum_{mv} \{SAD(mv) + \lambda_{ME} \text{Bits}(mv)\}}{\sum_{mv} 1}$$
Find the MV for each 4x4 block in each high motion patch

Enhance a 4x4 block only if its MV matches the MVs from no fewer than Th_{mv} (set to 6) of the 8 neighboring blocks – i.e. if the block is inside of a uniform motion area
For each high motion 4x4 block P to be enhanced

- Find the corresponding block P' in the GF using MV (P)
- Calculate the MSD between P and P'
- Copy P' to P if MSD is below a threshold, calculated as in the case for low motion areas
Patch Size

- Compare the threshold T_{MSD} to

$$T_{\text{MSD}0} = 0.0377e^{0.2272QP}$$

- If $T_{\text{MSD}} > T_{\text{MSD}0}$, patch size = 32 x 32;
- Else, we determine patch size according to P_T, the percentage of the MVs leading to a higher MSE calculated between GF & SF than the MVs calculated between GF & GF+1.
Test Conditions

- HM 8.2 with the low delay configuration
- Divided the test clips into two segments – the first 32 frames and everything else
- The QP difference was 5
- Clips of different motion levels and resolutions
 - Vidyo1, Vidyo3, KristenAndSara, FlowerVase, ChinaSpeed, BaseketballPass, ChromaKey, FourPeople, Johnny, SlideEditing, BQSquare, Traffic, PartyScene, ParkScene, Kimono, …
 - Testing range extension clips
Results

- Average PSNR gain for SF, 30 and 60 frames after the SF: 0.92dB, 0.61dB and 0.49dB
- Side information needed: 16 bits for PSNR and P_T of the SF after Intra encoding
Standard Decoder
After Enhancement
Enhanced Decoder
Visual Comparison
Visual Comparison
Visual Comparison
Results
Results
Observations

- Visible improvement in static areas and some motion areas
 - Sometimes even when there was a slight PSNR loss
- Artifacts created by mis-alignment of patches, visually similar to artifacts created by MV losses
 - Error concealment techniques apply?
Summary

- The decoder may have more information and computational power than what was utilized by the encoder.
- A preliminary algorithm for utilizing the computational power and information at the decoder was proposed.
- Side information needed: PSNR for SF after encoding – could be estimated by the decoder?
- Encouraging visual and RD improvements with areas of improvements especially for moving areas.
- Application to scalability and range extensions?
Parameters Fitting (Thres-PSNR)
Parameters Fitting (Thres-cost)