Light Weight Video Fingerprints for Video Playback Verification in MPEG DASH

Zhu Li and Imed Bouazizi
Multimedia Standards Research
Samsung Research America

Outline

- Motivation
- Ads Playback Verification
- Light Video Fingerprint for Verification
- Simulation Results
- Conclusion & Future Work

MPEG DASH System

- MPEG DASH Video System
 - Client "pull" based solution
 - HTTP Server with minimum intelligence on the server side
- MPD Media Presentation Description

Ads in MPEG DASH

- Ads in DASH
 - Pre-spliced into the content
 - Period based Ads segments
- DASH is an open and client driven system, how to verify that ads are actually played out at the client?
 - Create content period/segment serving dependence at the server

Playback Verification in DASH

- Introduce a playback verification server
 - Client playback the content, will compute a fingerprints and send to the server for verification

Challenges

- The fingerprint extraction and verification should have minimum computational complexity for the client and verification server, such that the solution is scalable.
- The communication overhead of fingerprints should be very small
- Invariant to different rates of the ads period
- Should have very high True Positive Rate (TPR)
- The False Positive Rate (FPR) should be very low

Eigen Appearance Trajectory

 Motivated by the Eigenface work, bring video sequences to the Eigen appearance space

Differential Eigen-Appearance Signature

- Ads sequences are typically of high activities,
- The differentials of the Eigenappearance trajectories captures a very useful signature for verificaiton

$$dx(k) = \begin{cases} 0, & \text{if } k = 1 \\ Af_{k+1} - Af_k, & \text{else} \end{cases}$$

Fingerprints Verification

Distance metric between two m-frame fingerprints

$$d(dx^{1}, dx^{2}) = \frac{1}{m} \sum_{k} (dx^{1}(k) - dx^{2}(k))$$

- Verification by thresholding on d(dx¹, dx²)
 - Rejecting different sequences, whileccommodating rates variations

Noise suppression

Ads sequences usually have many cuts

shlshedo d=0.04

80

60

40

20

-20

100 200 300 400 500 600

 Differential signature value at cuts are noisy, remove by,

$$dx(k) = \begin{cases} 0, & if \ k = 1 \\ d_{max}, & else \ if \ A(f_{k+1} - f_k) > d_{max} \\ A(f_{k+1} - f_k), & else \end{cases}$$

Simulation Setup

Data Set:

- 4000 ads clips of durations 15s, 30s and 60s
- Simulating 3 DASH streaming rates: 480, 640, and 800kbps
- 100+ hours of distraction video data sets from youtube,
 TRECVID, coded at various rates between 300kbps to 1mbps
- Probes set up, for each test ads sequence,
 - Positive probes: lower rates sequence probing 800kbps
 - Negative probes: randomly select 10 sequences from the distraction set

Simulation Results

Signature Computing:

- 1-d signature from 6-dim Eigen Appearance space
- Approximately 200bits/sec for 25fps sequence, regardless of its frame size and bit rate, very small overhead
- Computation complexity
 - At client, less than 0.5% of ffmpeg decoding
 - At verification server, O(m), very small

Simulation Results

Accuracy

 For 100% TPR, i.e, no positive probes are rejected, the FPRs are,

	<i>t</i> =60s	<i>t</i> =30s	<i>t</i> =15s
R=640kbps	0.15%	0.52%	1.30%
R=480kbps	0.15%	0.60%	3.15%

Conclusion & Future Work

Conclusion

- Introduced a DASH video playback verification system and protocol
- Developed a light weight, robust video fingerprints for video playback verification, the performance in accuracy is good, while at minimum computation and communication overhead
- In the future,
 - develop a binarized fingerprints for even faster verification
 - Automatic token hash generation

Q&A

• Questions....

Thanks/Gracias