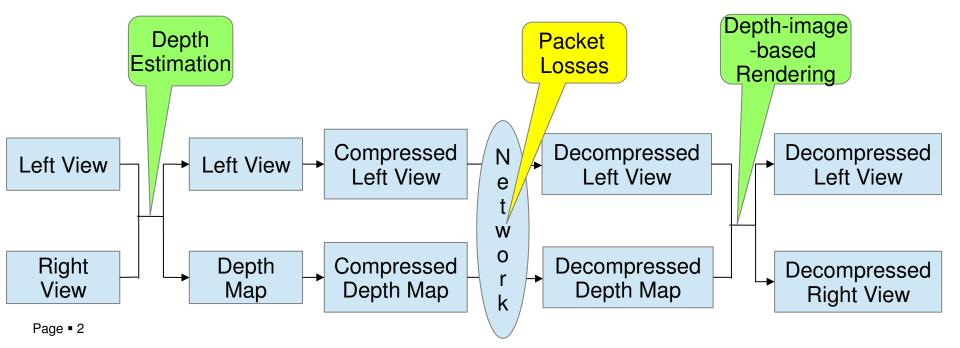
The 20th International Packet Video Workshop (PV 2013)


# Packet Loss Visibility for View+Depth Compressed Stereo 3D Video

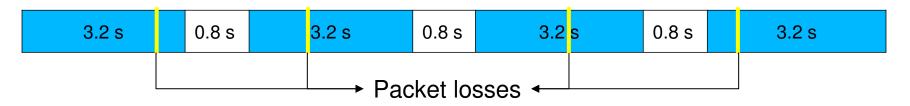
Qing Song, Pamela Cosman University of California, San Diego December 12, 2013



## **Overview**

- 3D video: more data for storage and transmission
  - View+depth compression.
  - Depth includes no texture, can be compressed efficiently
- Lossy channel: packets can be lost.
  - Visibility of the packet loss, unequal error protection (UEP)
  - Human observer experiment












 Insert packet loss every 4 sec, losses occur in the first 3.2 sec randomly, last 0.8 sec will allow any error propagation to stop



- Show lossy videos to people, viewers press space bar when see a glitch
- Response within 1 second considered as hit

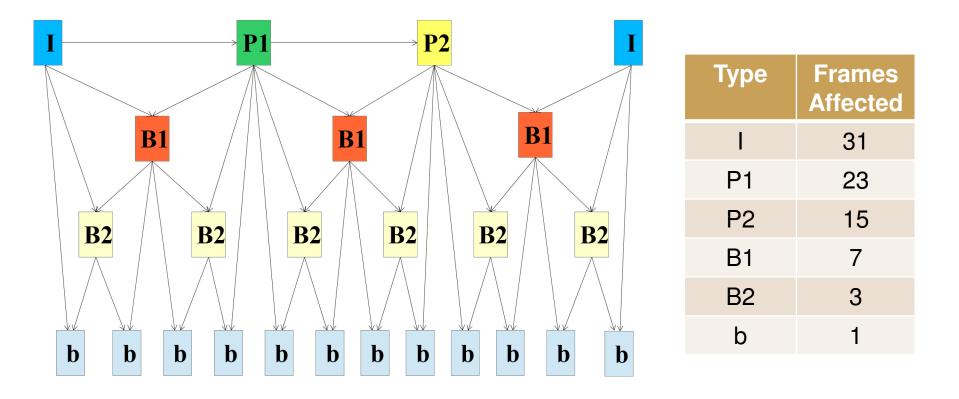




- Video: 21'20"
- 5 versions of lossy videos
- Each version includes 300 losses
- Each version of the lossy video was shown to 12 people (ages 18 28)
- All participants have good stereo vision (tested by stereo fly test)
- A 3-min pilot training video was shown before the experiment



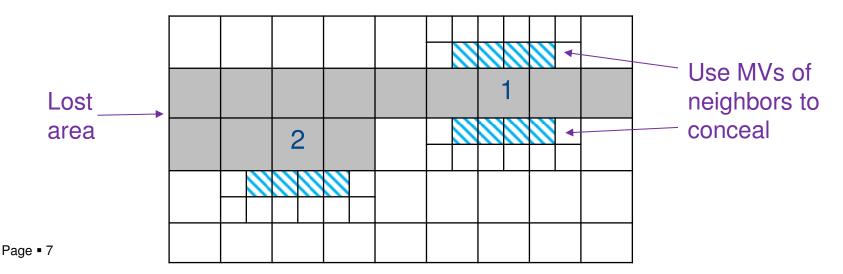
- Depth maps downsampled by 2 in horizontal and vertical directions [5]
- Color and depth encoded separately


| Color resolution  | 1920 x 1080         |
|-------------------|---------------------|
| Frame rate        | 30 fps              |
| Profile           | H. 264 High Profile |
| GOP structure     | Hierarchical        |
| I-frame insertion | Every 24 frames     |
| QP                | 26 [5]              |
| Codec             | JM 18.1/16.2        |
| Packet size       | 1316 bytes [6]      |

[5] D. Rusanovskyy, H. Schwarz, "Common Test Conditions for 3DV experimentation", ISO/IEC JTC1/SC29/WG11 MPEG, N12745 2012.

[6] DSL Forum Technical Report TR-126: "Triple-play Services Quality of Experience (QoE) Requirements". Dec 2006

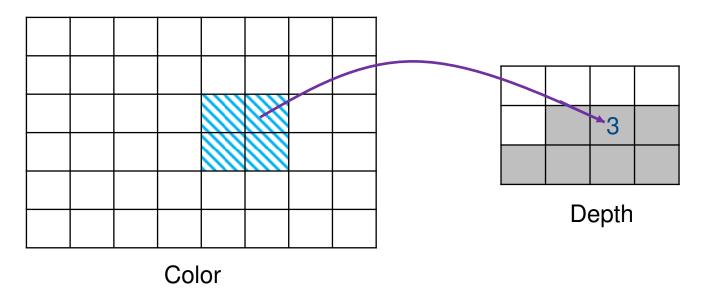



- 4 layers
- Same structure for color and depth





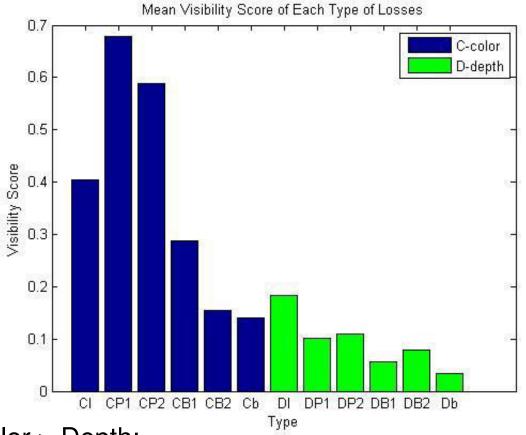
## Color packet loss


- I slice: spatial interpolation
- P/B slice: Motion-compensated error concealment (MCEC)
  - Extract motion vector(MV) of neighboring available macroblocks(MBs)
  - Find the one that minimizes boundary matching error
  - MV of correctly decoded MBs used if available
  - If not, use MV of concealed MBs
  - All neighboring MBs in intra-mode / whole frame loss: MV = 0





# Depth packet loss


- I slice: spatial interpolation
- P/B slice: concealed using motion vectors of co-located color MBs [7]
  - If co-located color MBs are intra coded: MV = 0



[7] Y. Liu; J. Wang; H. Zhang, "Depth Image-Based Temporal Error Concealment for 3-D Video Transmission," *Circuits and Systems for Video Technology, IEEE Transactions on*, vol.20, no.4, pp.600,604, April 2010



Visibility score = (# viewers who saw the loss) / (# viewers who assessed video)



In general, Color > Depth:

- Color losses affect both views, depth losses affect only right view
- people are probably more sensitive to the blocky artifacts

# **Experimental Results**



## Color packet loss





Depth packet loss





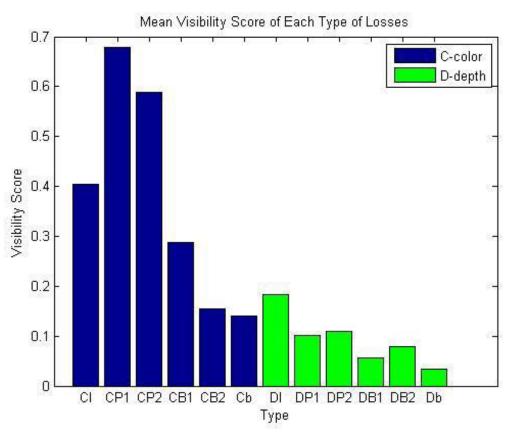


✤ CP > CI, CP > CB:

- Time duration: I > P > B
- Spatial area affected: B > P > I

| Video                   | Color | Depth |  |
|-------------------------|-------|-------|--|
| Avg # Pkt in<br>I frame | 50.8  | 2.3   |  |
| Avg # Pkt in<br>P frame | 39.3  | 2.0   |  |
| Avg # Pkt in<br>B frame | 20.4  | 1.5   |  |

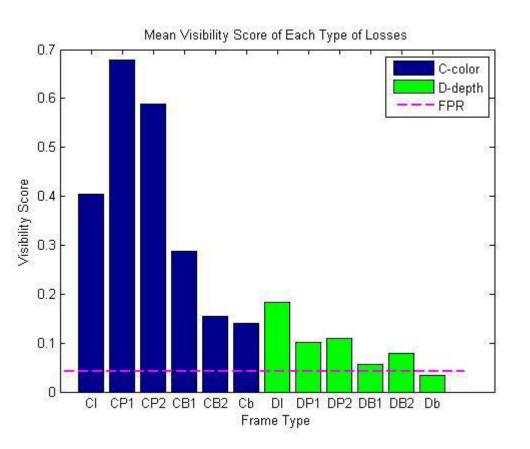
0.7 C-color D-depth 0.6 0.5 0.4 0.3 0.2 0.1 0 CP1 CP2 CB1 CB2 Cb CL DI DP1 DP2 DB1 DB2 Db Туре


Mean Visibility Score of Each Type of Losses

[8] Y.-L. Chang, T.-L. Lin, and P.C. Cosman, "Network-based IP packet loss importance model for H.264 SD videos", IEEE PacketVideo 2010.

# ✤ DI > DP, DI > DB:

- Inter-coded MBs concealed better than intra-coded MBs
- Time duration of I frame is the longest


| Video                   | Color | Depth |
|-------------------------|-------|-------|
| Avg # Pkt in<br>I frame | 50.8  | 2.3   |
| Avg # Pkt in<br>P frame | 39.3  | 2.0   |
| Avg # Pkt in<br>B frame | 20.4  | 1.5   |





## **Experimental Results: False Positive Rate**

- False positive rate = 4.17%
  - May be due to compression artifacts, view synthesis artifacts, or just inattention
  - Well below the mean visibility score of losses in all the color frame types and in depth I and P frames
  - But close to the mean visibility score of depth B frames





- Content independent features:
  - IsColor: whether the loss is in a color video (not depth)
  - TMDR: time duration of the loss, determined by frame type
  - DevFromBorder = floor(N/2)-abs(Height-floor(N/2)): deviation from border
    N = number of rows of MBs in a frame. HD: N = 68
  - IsClframe, IsPlframe, IsBlframe, IsDlframe, IsDPframe, IsDBframe: frame type

| Туре | Time<br>duration |
|------|------------------|
| I    | 31               |
| P1   | 23               |
| P2   | 15               |
| B1   | 7                |
| B2   | 3                |
| b    | 1                |



- Content dependent features
  - NumMB: number of MBs in the affected area
  - PktSize: packet size in bytes

Packets < 1316 when

(1) whole frame is included in that packet: low motion complexity

(2) the last packet in the frame: spatial location



- Extract the following features from both color and depth MBs
  - NumIntra, NumInter, Num(Skip/Direct): number of MBs in the affected area coded in intra, inter, skip/direct mode
  - IntraRatio, InterRatio, (Skip/Direct)Ratio =

Num MB in intra,inter,skip or direct mode Num MB in the whole af fected area

- MaxInterparts: maximal sub-partitions in MBs
- Motion vectors: x, y components, magnitude, angle
- RSENGY: residual energy per pixel after motion compensation



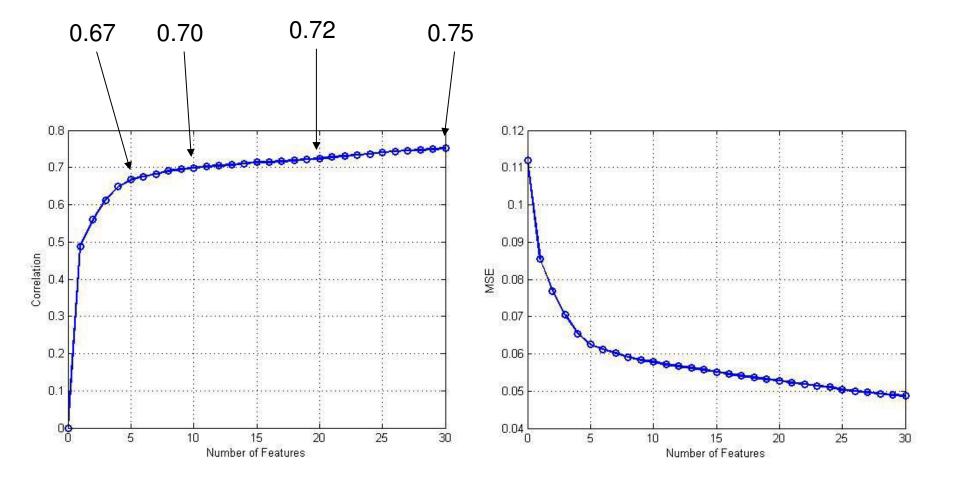
- IMSE, ISSIM: initial MSE and SSIM per MB within the frame where loss occurs.
  - Compute between compressed error-free video (f) and degraded video (f')
  - MSE per MB:  $\sum_{i=1}^{16} \sum_{j=1}^{16} (f_{ij} f'_{ij})^2$ , larger value means worse quality
  - SSIM per MB:  $\frac{(2\mu_f\mu_{f'}+C_1)(2\sigma_{ff'}+C_2)}{(\mu_f^2+\mu_{f'}^2+C_1)(\sigma_f^2+\sigma_{f'}^2+C_2)}$ , smaller value means worse quality
  - Compute MaxMSE, MeanMSE, VarMSE, MinSSIM, MeanSSIM, VarSSIM



- Foreground MB: attracts people's attention
  - Extract foreground pixels by setting a threshold to depth: depth < threshold</li>
  - A MB classified as foreground MB if over half of pixels are foreground
- Features related to foreground MB
  - FGNum: number of foreground MBs in the packet.
  - FGRatio: FGNum divided by the total number of MBs in the packet.



Generalized linear model with logit as link function


$$\log\left(\frac{p}{1-p}\right) = \gamma + \sum_{j=1}^{K} x_j \beta_j$$

p – visibility score,  $x_j$  – feature,  $\beta_j$  – coefficient,  $\gamma$  – constant term

- 5-fold cross validation to select efficient features and prevent overfitting
- MSE and correlation coefficient between prediction and ground truth to measure performance

### **Prediction Mode: Performance**





#### **Correlation Coefficient**

Mean Squared Error



#### Ten most important features: (x means interaction)

| Feature # | Feature                       |
|-----------|-------------------------------|
| gamma     | 1                             |
| 1         | IsColor x CIntraRatio         |
| 2         | TMDR x MaxMSE                 |
| 3         | IsColor x DevFromBorder       |
| 4         | IsCBframe x CMaxMotA          |
| 5         | IsColor x CMaxMotM            |
| 6         | IsCPframe x CNumIntra         |
| 7         | D(Skip/Direct)Ratio x MinSSIM |
| 8         | PktSize                       |
| 9         | DInterRatio x DVarMotA        |
| 10        | IsDBframe x DMaxMotX          |



- IsColor: the most important feature, has positive coefficients
  - CIntraRatio: more MBs in intra mode, harder to conceal
  - DevFromBorder: larger value, closer to the center of the screen
  - CMaxMotM: larger MotM, higher motion

| Feature # | Feature                 | <b>Coefficient Sign</b> |
|-----------|-------------------------|-------------------------|
| 1         | IsColor x CIntraRatio   | +                       |
| 3         | IsColor x DevFromBorder | +                       |
| 5         | IsColor x CMaxMotM      | +                       |



## Frame type:

- IsCPframe x CNumIntra: more MBs in intra mode implies the motion is complicated or there is a scene cut. Loss won't be concealed well.
- IsCBframe, IsDBframe, negative coefficients: B frames less visible

| Feature # | Feature                    | <b>Coefficient Sign</b> |
|-----------|----------------------------|-------------------------|
| 4         | IsCBframe x CMaxInterparts | -                       |
| 6         | IsCPframe x CNumIntra      | +                       |
| 10        | IsDBframe x DMaxMotX       | -                       |



- Objective metrics:
  - TMDR x MaxMSE: big distortion lasting longer, more visible
  - D(Skip/Direct)Ratio x MinSSIM: smaller SSIM means larger distortion

| Feature # | Feature                       | <b>Coefficient Sign</b> |
|-----------|-------------------------------|-------------------------|
| 2         | TMDR x MaxMSE                 | +                       |
| 7         | D(Skip/Direct)Ratio x MinSSIM | -                       |

# Conclusion



- Color: P > I > B
  - Competing factors of time duration and spatial area
- Depth: I > P > B
  - Same 2 competing factors but also different error concealment effects
- Prediction model of visibility score
  - Correlation coefficient = 0.67 with 5 features, 0.7 with 10 features, and 0.75 with 30 features

# **Future Work**



- Unequal error protection (UEP)
  - UEP for video+depth vs. UEP for MVC
  - Test for Rayleigh fading channels
- Comparing with MVC
  - Losses in secondary view have similar visibility of depth map?
  - False positive rate caused by view synthesis artifacts?