

Improving Video Quality by Information Sharing

Ion Stoica, CTO (also at UC Berkeley and Databricks)

Across many sites

We've seen 3

While monitoring more than 4 Billion streams

Viewers watch more when video is not interrupted

Buffering Impacted Views (BIV): > 2% buffering or > 5s continuous buffering

non-BIV BIV

Viewers watch more when video is higher definition

Viewers leave and do not return to sites when video fails to start

Viewers who experience a single video start-up failure return 54% less

Every step of the delivery chain presents unique challenges to delivering video with low interruptions and high bit-rate

CDNs Vary in Performance over Geographies and Time

- Metric: buffering ratio
- One month aggregated data-set (2011)
 - Multiple Flash (RTMP) customers
 - Three major CDNs
- 31,744 DMA-ASN-hour with > 100 streams from each CDN
 - DMA: Designated Market Area
- Percentage of DMA-ASN-hour partitions a CDN has lowest buffering ratio

There is no single best CDN across geographies, network, and time

There is no single best CDN in the same geographic region or over time

CDN Streaming Failures Are Common Events

* % of stream failures: % of streams with video start failures

Three months dataset (May-July, 2011) for a premium customer

using Flash

CDN (relative) performance varies greatly over time

Performance Changes Minute-by-minute

For the same ISP, CDN performance varies minute by

Different quality metrics no always correlated

Conviva Approach to Optimize Viewer Experience

Viewer Centric Position

True end-point sensor to see what the viewer sees and inform the source in real time

Real-time Measurement from Every Viewer

CONVIVA

Conviva Approach to Optimize Viewer Experience

Viewer Centric Position

True end-point sensor to see what the viewer sees and inform the source in real time

Continuous Optimization

 Adjustments to streams every second to account for local environment and Internet variables

Global View and Policy Control

 Dynamic policy control based on real-time patterns across viewers, affiliates, and networks

IP Video Streaming Architecture

IP Video Streaming Architecture

Conviva Platform

Conviva Platform

Key Idea behind Inference & Prediction Engine

Share quality information across views

Use quality information from existing views to predict

- performance of new viewers at join time
- performance of existing views if we were to switch bitrate or CDN

Create a model consisting of a set of decision tables

Reactively adapting after failure too late!

Inference and Decision Engines

Update decision tables every 1min (5-8 sec processing)

Make decisions in constant time (<1ms)

Spark

- In-memory computation engine
 - APIs in Scala, Python, Java
- Unifies batch, streaming, interactive computations
 - Powerful machine learning (MLlib) and soon graph (GraphX) libraries
- Used by tens of companies including Yahoo!, Intel

Use Case 1: Best Starting Bit Rate for Single CDN

Pick the best starting bit rate based on decision tables...

- Device
- Connection type (3G, 4G, wifi)
- Geo (DMA)
- ASN
- Protocol
- Player version
- Etc.

Use Case 1: Best Starting Bit Rate for Single CDN

Pick the best starting bit rate based on decision tables...

Device

Connection type (3G, 4G, wifi)

- Geo (DMA)
- ASN
- Protocol
- Player version
- Etc.

For an iPad in ASN[1] select highest bit rate providing good quality (i.e., rate[3])

Use Case 2: Best Starting CDN for Multi-CDNs

Pick the best CDN based on decision tables...

- Device
- Connection type (3G, 4G, wifi)
- Geo (DMA)
- ASN
- Protocol
- Player version
- Etc.

Use Case 2: Best Starting CDN for Multi-CDN

Pick the best CDN based on decision tables...

- Device
- Connection type (3G, 4G, wifi)
- Geo (DMA)
- ASN
- Protocol
- Player version
- Etc.

Use Case 3: CDN Switch on Quality Degradation

Client centric predictive
algorithms track recent trends
in
available bandwidth,
buffer length,
rendering performance ...
and predict quality problems

Global Inference &
Prediction algorithms track
global trends by
geography,
network (ASN),
CDN...
identify anomalies and
predict quality of views

CONVIVA

Use Case 4: Asset Publishing and Caching Issues

Global inference algorithms track individual asset failures by device geography, network (ASN), CDN...

and identify any regional anomalies

Use Case 5: ISP Saturation

Use Case 5: ISP Saturation

Use Case 5: ISP Saturation

Challenges

What happens if a partition doesn't has enough data?

- 1) Spatial aggregation
 - Which partition use for prediction?

Challenges

What happens if a partition doesn't has enough data?

- 1) Spatial aggregation
 - Which partition use for prediction?

- 2) Temporal aggregation (increase window) DMA
 - What window size?

Example 1: CDN and Bit Rate Selection

Example 1: Impact on CDN Usage

ASN 7922 (Comcast) – for all of Aug 19th

Metric	Buffering Ratio	Avg. Bitrate	Video failures	
CDN1	1.26 %	2270 K	9.3%	Precision picks
CDN2	1.08 %	2668 K	8.12%	CDN2 64%
CDN3	1.47 %	2451	9.9%	of the time

ASN 20057 (AT&T Wireless) for all of Aug 19th

Metric	Buffering Ratio	Avg. Bitrate	Video failures	
CDN1	2.12 %	1832 K	10.7%	Precision picks
CDN2	2.46 %	1874 K	11.0%	CDN1 & CDN3
CDN3	2.09 %	1830 K	9.6%	74% of the time

Example 1: Aggregate over 5 Days

Metric	Non-Precision	Precision	Precision Improvement
Buffering Ratio	2.3 %	1.5 %	33% 🤳
Average Bitrate	1692 K	2287 K	35% 👚
Failures and Exits	11.5%	10.6 %	8% 👃
Buffering Impacted Views	13.4%	9.4 %	30% 👢

Example 2: Preserving Quality in Presence of Failures

- Precision ensures that audience quality is NOT impacted by CDN failures
- Content brands and audience are protected
- Content owners can be more aggressive in using capacity from CDN vendors

With Precision Video, CDN problem has no effect on viewers

Without Precision Video, CDN problem has big effect on viewers

Summary

- O Key transition of main-stream video to the Internet
- Video quality presents opportunity and challenge
 - Premium video on big screens → zero tolerance for poor quality
- Ability to infer and predict viewer quality key to maximize quality perceived by users
 - Beacting after the fact too late!

Conviva Precision Protects Brands, Audience & CDN

- Precision ensures that audience quality is NOT impacted by CDN failures
- Content brands and audience are protected
- Content owners can be more aggressive in using capacity from CDN vendors

With Precision Video, CDN problem has no effect on viewers

Without Precision Video, CDN problem has big effect on viewers

Conviva Precision: Simultaneously Increasing Resolution

& Reducing Buffering

Other VoD Entertainment Competitors

With Conviva Precision, Viewers Watch More, Come Back More Often

ift with Precision

Reduced views impacted by buffering from 16.13% to 5.56%

Increased average bitrate from 1.7 mbps to 2.1 mbps

First Full Month Results

Audience	Views	19%
	Uniques	15%
	Viewed Minutes	36%
	Minutes per View	14%
	Minutes per Unique	18%

Raised engagement by 36%

The Truth

- Video delivery over the internet is hard
 - CDN variability makes it nearly impossible to deliver high quality all the time with just one CDN

- Where there is heterogeneity, there is room for optimization
- For each viewer we want to decide what CDN to stream from
- But it's difficult to model the internet, and things can rapidly change over time
- So we will make this decision based on the real-time data that we collect

The Truth

- Video delivery over the internet is hard
 - CDN variability makes it nearly impossible to deliver high quality everywhere with just one CDN

The Truth

- Video delivery over the internet is hard
 - CDN variability makes it nearly impossible to deliver high quality all the time with just one CDN

- Where there is heterogeneity, there is room for optimization
- For each viewer we want to decide what CDN to stream from
- But it's difficult to model the internet, and things can rapidly change over time
- So we will make this decision based on the real-time data that we collect

- For each CDN, partition clients by City
- For each partition compute Buffering Ratio

For each partition select best CDN and send clients to this CDN

CDN2 (buffering ratio)

For each partition select best CDN and send clients to this CDN

For each partition select best CDN and send clients to this CDN

CDN2 (buffering ratio)

For each partition select best CDN and send clients to this CDN

What if there are changes in performance?

Best CDN (buffering ratio)

Use online algorithm respond to changes in the network.

Best CDN (buffering ratio)

CDN2 (buffering ratio)

How?

- Ocordinator implementing an optimization algorithm that dynamically selects a CDN for each client based on
 - Individual client
 - Aggregate statistics
 - Content owner policies
- All based on realtime data

What processing framework do we use?

- Twitter Storm
 - Fault tolerance model affects data accuracy
 - Non-deterministic streaming model
- Roll our own
 - Too complex
 - No need to reinvent the wheel
- Spark
 - Easily integrates with existing Hadoop architecture
 - Flexible, simple data model
 - Writing map() is generally easier than writing update()

Results

Non-buffering views

Spark's Role

- Spark development was incredibly rapid, aided both by its excellent programming interface and highly active community
- Expressive:
 - Develop complex on-line ML decision based algorithm in ~1000 lines of code
 - Easy to prototype various algorithms
- It has made scalability a far more manageable problem
- After initial teething problems, we have been running Spark in a production environment reliably for several months.

Problems we faced

- Silent crashes...
- Often difficult to debug, requiring some tribal knowledge
- Difficult configuration parameters, with sometimes inexplicable results
- Fundamental understanding of underlying data model was essential to writing effective, stable spark programs

Enforcing constraints on optimization

Imagine swapping clients until an optimal solution is reached

Enforcing constraints on top of optimization

- Solution is found after clients have already joined.
- Therefore we need to parameterize solution to clients already seen for online use.
- Need to compute an LP on real time data
- Spark Supported it
 - 20 | Ps
 - Each with 4000 decisions variables and 350 constraints
 - 5 seconds.

Tuning

- Oan't select a CDN based solely on one metric.
 - Select utility functions that best predict engagement
- Onfidence in a decision, or evaluation will depend on how much data we have collected
 - Need to tune time window
 - Select different attributes for separation

Tuning

- Need to validate algorithm changes quickly
- Simulation of algorithm offline, is essential

Spark Usage for Simulation

HDFS with Production traces

- Load production traces with randomized initial decisions
- Generate decision table (with artificial delay)
- Produce simulated decision set
- Evaluate decisions against actual traces to estimate expected quality improvement

Future of Spark and Conviva

- Leverage spark streaming
- Unify live and historical processing
- Develop platform to build various processing 'apps' (e.g. Anomaly Detection, Customer Tailored Reporting)
 - Can share the same data API
 - Will all have consistent input

In Summary

- Spark was able to support our initial requirement of fast fault tolerant performance computation for an on-line decision maker
- New complexities like LP calculation 'just worked' in the existing architecture
- Spark has become an essential tool in our software stack

Real-time Measurement from Every Viewer

CONVIVA

An UK ISP: Top Metros by Metric over time

Measurements of 3 Leading CDN Show Significant Variation Over Geo and ISP

San Francisco - Oakland - San Jose: CMCS (33651)

Houston: CMCS (33662)

Hartford & New Haven:COMCAST-7015(7015)

Eugene: ASN-QWEST (209)