
Named Functions
for Media Delivery Orchestration

PV2013 Packet Video Workshop

San Jose, CA USA, Dec 12+13, 2013

Christian Tschudin and Manolis Sifalakis, University of Basel

Abstract

[. . .]

In this paper we introduce a framework for orchestrating

media distribution tasks in the spirit of [Content Centric

Networking] by means of named functions.

[. . .]

The aim of named function networking (NFN) is to serve

as a redirection mechanism that allows the network to

allocate memory and computation resources in the most

optimal way (as CDNs do for content replicas).

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (2/20)

Raison d’être of Named Function Networking

Often, having data is not what you want

—

Using data is what you want!

Use (!) cases:

media consumption, sensor feeds, data analytics

Content Centric Networking is wrong to think that the network

is all about transferring raw data – it must deliver cooked data.

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (3/20)

Overview

1. Introduction

– named data networking (NDN)

– named function networking (NFN)

– programs as names

2. Four application scenarios

3. Implementing NFN with the λ-Calculus

4. Views on NFN, Conclusions

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (4/20)

1.a) What is Named Data Networking?

. . . also called

Information Centric Networking

or Content Centric Networking

Consumer:

Producer:

NDN tenets:

• Name the data, not the server

• The network transparently (pre-) caches data, recognizes names

• Network-plus-memory: The network becomes the memory

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (5/20)

1.b) What is the problem of Named Data Networking?

Many places where

customized control

would be desirable.

Producer

Consumer
cache ctrl?

access ctrl?

rendering ctrl?

Carrier

With pure named-data-delivery:

. . . media publishers cannot impose access control,

. . . would have to generate and insert all possible media formats

. . . consumers at the mercy of publishers, have to do redundant rendering

. . . difficult to coordinate cached content across carrier boundaries

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (6/20)

1.c) What is Named Function Networking?

Media content as well as

function content

Consumer:

Producer:
Third parties (or
consumer)

NFN tenets:

• Names for data and functions: name the result

• The network caches results, recognizes named results

• Network-plus-memory-plus-cpu: The network is the computer

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (7/20)

1.d) Programs as Names

“name the result . . . the network recognizes named results” – how?

• Express the desired result as a chain of function invocations:

– parameters: named data

– named functions

– procedures: permit on-the-fly definition of anon. functions

• Use “functional expressions” as first-class (content) names

Later in the slide set: λ-Calculus to our help

From Wikipedia: “Lambda calculus is a formal system [. . .] for

expressing computation[s]”

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (8/20)

2. Four Application Scenarios

Introducing NFN with media delivery tasks:

(a) Media transcoding

(b) Access control

(c) Dynamic (active) content

(d) Cache Control with MapReduce

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (9/20)

2.a) Media Transcoding à la carte

Retrieve a video V in a format produced by transcoder T

• In NDN: download the parts, then apply

rawvideo = resolve("name_of_V");

transcoder = resolve("name_of_T");

cookedvideo = transcoder(rawvideo);

• In NFN: download final result

cookedvideo = resolve("name of T(name of V)");

i.e., leave it to the network to best “resolve”

(= search or compute) this request.

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (10/20)

2.b) Conditional Access to Media

Instead of plain /the/media, this “access name” is given to clients:

(define playmedia(x) (ifelse (/ca/auth x) (/codec/mpeg x) nil)

playmedia(/the/media)

)

Partial sequence of reduction steps:

→ λx.((ifelse (/ca/auth x) (/codec/mpeg4 x) nil)) /the/media

→ (ifelse (/ca/auth /the/media) (/codec/mpeg /the/media) nil)

→ (/ca/auth /the/media) (/codec/mpeg /the/media) nil

→ (λxy.x) or (λxy.y) which stands for True or False

Function /ca/auth can be made to execute on trusted places only.

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (11/20)

2.c) Dynamic (active) Content

Data carried with prog is handed out except if a newer version exists

(define newer ver (x) (

ifelse (rightSiblingExists x)

(rightSibling x)

tailreturn

)

newer ver(/the/media/)

) PAYLOAD GOES HERE

rightSiblingExists() could be “pinned down” and the publisher to

never register the result, which effectively disables caching.

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (12/20)

2.d) MapReduce (and Cache Control)

MR computation pattern known since long (in LISP: Map and Fold)

Mapper and reducer fcts can be passed by name, network applies the MR pattern.

Example: Learning the regional top-ten content; a) mappers ask all

neighbors for top-ten names and frequency, b) reducing step sorts

results, selects top-ten. Action: Tell neighbors to keep only this list.

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (13/20)

3.a) How NFN works: λ-Calculus

λ-calculus recap slide, also for functional programming novices (LISP, Haskel, etc)

A λ-calculus expression E has one of three forms:

1. E
def
= a variable a

2. E
def
= f(e) result of function f applied to expr e

3. E
def
= λx.e a function defined by expr e with parameter x

– NDN is doing a “variable lookup” (case 1):

fetch the content that is bound to a given name

– Our NFN approach adds cases #2 and #3 to NDN

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (14/20)

3.b) Executing λ-Expressions: Reduction Steps

Consider f(a, g(b)) (where a, b, f and g are names)

• Reduce by launching three activities:

– hunt for f

– hunt for a

– reduce g(b) recursively

such that we can “execute” that expression.

• Note that depending on f, some reductions are not needed at all.

(f might be the if-then function and a a boolean value).

• There are several strategies how to resolve:

call-by-value, call-by-name, call-by-need, etc

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (15/20)

3.c) Named-Data as a Special λ-Calculus Case

D = data bits
F = byte code, binaries
@ = execution site

Data
Pull

f(d) f(d)

NDN

f(d)

D

d

Data + Code
Pull

Computation
Push

D

NFN

F

DFDF

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (16/20)

3.d) Caching Results by Fingerprinting λ-Expressions

NFN avoids recomputing results, first checks for cooked data:

• requires a “canonical name” for each possible result

• We do a hash on the full “functional name”

h = hash("the expression whose result we are interested in")

• NFN has an internal instruction FOX(expr) called find-or-execute:

h = hash(expr);

result = lookup-by-name(h);

if result != nil then

return result;

return reduce-by-name(expr);

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (17/20)

4.a) Different Views on NFN

Information Centric Networking is more than NDN

• Customized “cooked data” dissemination, consumption:

just express your logical requirement, network to find ways to

satisfy the request, optimize with similar & partial requests

• ICN becomes a cloud:

superset of CDN behavior, plus dynamic content

• Two levels of programmability:

– λ-Calculus for orchestration

– (named) binary code for bit-level computations

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (18/20)

4.b) Implementation Status

• λ-Expression reduction engine up and running

– call-by-name reduction strategy (Krivine’s machine)

– re-implemented the ZINC abstract machine (from Caml)

– replaced all memory access to use CCNx substrate

• Intervowen Reduction and Routing strategies:

– mapping NFN result names to CCNx’ name scheme (see paper)

– reduction+routing strategy being integrated to CCN-lite

λ-Expression-reduction was demoed at CCNxCon at PARC, Sep 2013

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (19/20)

4.c) Conclusions

• Push ICN vision to the next level:

– results, not raw data, matter

• “Generative media” on demand

• Customizable (by publisher): open set of access functions

• Customizable (by consumer): open set of rendering functions

Name the result – and consider it done!

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (20/20)

Appendix 1 - Call-By-Name

Resolving arbitrary λ-expressions is not trivial:

• Call-by-name result (1980ies) from Jean-Louis Krivine

today known as “Krivine’s (lazy) machine”

• Krivine’s machine is expressable in terms of another abstract

machine called ZINC (Zinc-Is-Not-OCaml, for running OCaml programs)

• Our NFN resolution engine is based on ZINC, replaces

all memory accesses with “Interest←֓Content” actions:

– a returning content msg carries on with the computation.

We also add decision logic re execution places to the routing strategy.

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (21/20)

Appendix 2 - Extending CCNx’ Routing Strategy

Not Found

Christian Tschudin and Manolis Sifalakis, U of Basel PV2013, Dec 2013 (22/20)

