
The Nephele Livescale Toolkit: Real-Time Video
Stream Processing At Scale

Björn Lohrmann
Technische Universität Berlin

Email: bjoern.lohrmann@tu-berlin.de

Odej Kao
Technische Universität Berlin
Email: odej.kao@tu-berlin.de

Abstract—With the growing number of commodity devices
capable of producing continuous video and audio data streams,
the resulting overall data volumes raise challenges with respect
to the infrastructure used to to process and store them. The
future availability of services to automatically aggregate, analyze
or relate streams from different sources is desirable. We outline
components of a possible architecture for a large-scale and real-
time video processing system. Furthermore, we introduce the
Nephele Livescale Toolkit, which can be used to build real-time
video/audio processing data flows for the scalable, data-parallel
execution engine Nephele. We demonstrate the Livescale Toolkit
using a data flow, that groups and ranks live video streams by
geographic origin and video quality in real-time and redistributes
them to subscribed clients.

I. INTRODUCTION

As a growing number of commodity devices, such as
mobile phones and tablets, is capable of producing continuous
video and audio data streams, the sheer amount of these
devices and the resulting overall data volumes raise challenges
with respect to the infrastructure used to to process, store
and potentially distribute them. The ongoing deployment of
WebRTC-enabled (Web Real-Time Communication) browsers
and smartphone apps can be expected to give an additional
boost to this development. Over the past years, a lot of use
cases for inexpensive recording devices that address a large
audience of viewers have emerged. Websites like Livestream1

or Ustream2, offer their users means to produce and broadcast
live media content to a large audience in a way that has been
reserved to major television networks before. More and more
academic institutions and conferences not only offer recorded
lectures and talks but also broadcast them as livestreams.
CCTV (Closed-Circuit Television) cameras in public places
produce large amounts of video material, most of which is
currently either recorded to facilitate post-incident investiga-
tions or needs to be sighted by humans, which is both an
expensive and tedious task. Automated video analysis could
be a great cost-saver here and is also ongoing area of research
and development.

However, at the moment, the capabilities of available large-
scale services are limited to media transcoding or simple
picture overlays. In contrast to that, future services might also
offer to automatically aggregate, analyze or relate streams from
different sources. For example one could group video streams
by keyword tags, geographic closeness or more sophisticated
classification algorithms and find the best quality streams from

1http://www.livestream.com/
2http://www.ustream.tv/

that group. As these operations are computationally expensive
and in most scenarios must be applied in real-time, we propose
to use existing highly scalable stream processing engines. We
will outline components of a possible architecture for a real-
time video processing system, where video is captured on large
numbers of IP-enabled devices, processed in parallel inside a
shared-nothing cluster and distributed back to subscribed client
devices. Furthermore, we introduce the Livescale Toolkit,
which can be used to build real-time video/audio processing
data flows for Stratosphere’s3 scalable, data-parallel execution
engine Nephele and demonstrate its capabilities with a sample
application.

II. BACKGROUND

In recent years various engines for scalable stream data
processing have emerged [1], [2], [3], many of which can
be leveraged to process video and audio stream data in real-
time. The engines, while different in many aspects, typically
follow a master-worker pattern. The master node receives a
processing job, splits it into sets of individual tasks, and
schedules those tasks to run on the available worker nodes.
These frameworks are intended to run on existing shared-
nothing compute clusters (both virtualized and bare-metal) or
integrate with Infrastructure-as-a-Services (IaaSs) clouds [3] to
allocate virtual machines on demand.

These frameworks are intended to be general purpose
and can process arbitrary types of data. They take care of
three major aspects of the distributed computation. First, they
provide a programming model, that allows programmers to
continue writing sequential code as User-Defined Functions
(UDFs) and not worry about parallelization. The programming
model is usually a data flow graph, where vertices represent the
UDFs and the edges denote communication channels between
them. Some frameworks support arbitrary Directed Acyclic
Graphs (DAGs) shaped data flow graphs [3], some allow graph
structures containing loops [2], [1]. Second, these engines
execute the data flow in a data-parallel fashion, organize the
data transfers between tasks and balance the load between the
worker nodes. The way both vertices and edges translate to
system resources at runtime is similar among all of the men-
tioned systems. Each task vertex of the job typically translates
to either a separate process or thread within a process. Third,
some frameworks provide fault tolerance mechanisms, so that
when a task fails due to hardware or software failures, the
system can ideally recover the lost computation and data.

3http://www.stratosphere.eu



Nephele Engine

L
o
ad

B
al

an
ce

r

L
iv

es
tr

ea
m

 

T
o
o
lk

it

Internet

IP
-E

n
ab

le
d

 C
li

en
t 

D
ev

ic
es

IP
-E

n
ab

le
d

 S
o
u

rc
e 

D
ev

ic
es

L
o
ad

B
al

an
ce

r

Messaging 

Middleware

Web Layer

Structured DataInternet

Custom Application Components

Off-the-Shelf/Predefined Components

Dataflow

Video/Audio

Fig. 1. Architecture of a large-scale real-time video analysis and broadcasting system

III. SYSTEM ARCHITECTURE

In this section we will outline the architecture of a large-
scale real-time video processing system, shown in Figure 1.
Video/audio data originates at IP-enabled source devices and
is streamed through a transparent load-balancing layer into a
stream processing engine. We assume usage of the Nephele [3]
engine, that executes arbitrary DAGs and supports latency con-
straints [4], which can guarantee fast processing of incoming
data. Other engines may however be equally suited to the
task. The processed video/audio can then be shipped live to
interested clients or stored in a scalable storage system. To
signal additional or asynchronous events between the compo-
nents of the architecture standard messaging middleware can
optionally be employed, this is however outside the scope of
the poster. The load balancers coordinate where stream sources
send their data with the goal of evenly spreading the load. In
their simplest form they can be realized with round-robin DNS
for example. Another optional component is the Web Layer,
that can offer additional application-dependent functionality,
e.g. serve lists of available streams, manage user accounts
etc. All components must however be able to scale to large
numbers of clients.

IV. THE LIVESCALE TOOLKIT

To support the development of a system as outlined in
the latter section, we have researched and developed the
Livescale Toolkit, a set of reusable building blocks for real-
time video and audio stream processing inside the Nephele
engine. The source code and documentation are open source4.
In the following we will briefly present the most important
types of data flow building blocks.

a) Receivers and Broadcasters: A receiver is an arrival
point for video and audio data streams as well as meta-
data from outside the data flow and converts it into discrete
records for shipping within the engine. It also assigns a
unique identifier to each stream and attaches it to the records
resulting from that stream. A broadcaster provides the opposite
functionality and ships video/audio streams to connected or
subscribed clients.

b) Decoder and Encoder: Decoders apply codecs to
decompress video/audio streams into records with raw frames
or audio samples. Analogous, encoders reverse this process.

4http://github.com/bjoernlohrmann/livescale-toolkit

We have integrated the ffmpeg5 library to support a wide
variety of video and audio formats.

c) Frame Processors: A frame processor looks at the
frames it receives and applies operations on the frame records.
This can be a manipulation of the frame image, e.g. adding
a graphic overlay, or analysis of the frame content, e.g.
image quality assessment. All frame processors consume and
emit frame records or meta-data records with analysis results.
The toolkit contains a set of predefined frame processors,
such as text and timer overlays and image quality assessors.
Application-specific frame processors can be easily imple-
mented.

d) Frame Hubs and Routers: Frame hubs receive frame
records and emit a duplicate for each output, thus duplicating
the videostream. This enables concurrent processing of the
same video/audio stream by distinct branches of the Nephele
data flow. A router receives frame and meta-data records of a
stream and decides which parallel instance of the subsequent
vertex the frame record shall be routed to. This allows for
example to group streams by properties or prior analysis
results.

V. DEMONSTRATION

We demonstrate a scalable application that groups and
ranks live video streams by geographic origin and their quality
so that clients can choose the “best quality” live broadcast
by geographic location. We provide a setup of the major
components with a number of simulated video sources and
clients. The demonstration focuses on how the Livescale
Toolkit enables the development of scalable, highly-parallel
video processing applications within the Nephele execution
engine. WLAN (or preferably wired LAN) access and Internet
connectivity will be required. If unavailable, the demonstration
can be also be scaled down to run locally on the presenter’s
laptop.

VI. CONCLUSION

We have outlined and demonstrated an architecture
of a large-scale real-time video processing system where
video/audio data originates from and can be delivered to IP-
enabled source and client devices. Further, we have outlined
the Livescale Toolkit that provides video/audio stream process-
ing capabilities to the scalable execution engine Nephele.

5http://ffmpeg.org/



REFERENCES

[1] “nathanmarz/storm - GitHub,” https://github.com/nathanmarz/storm,
2012.

[2] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream
computing platform,” in 2010 IEEE International Conference on Data
Mining Workshops, ser. ICDMW ’10. IEEE, 2010, pp. 170–177.

[3] D. Warneke and O. Kao, “Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, pp. 985–997, Jun. 2011.

[4] B. Lohrmann, D. Warneke, and O. Kao, “Nephele streaming: Stream
processing under qos constraints at scale,” Cluster Computing, 2013.


