
A Consideration on Congestion Control for CCN

Yu Wang, Takeshi Muto, Zhou Su and Jiro Katto
Graduate School of Fundamental Science and Engineering

Waseda University, Tokyo, Japan
E-mail: wang@katto.comm.waseda.ac.jp

 Suphakit Awiphan
Department of Computer Science, Faculty of Science,

Chiang Mai University, Chiang Mai, Thailand
E-mail: suphakit.a@cmu.ac.th

Abstract—Content centric network (CCN) has been

developed as a new and revolutionary approach towards
networking. CCN aims at replacing the current forwarding
mechanism based on IP addresses with a mechanism based on
named contents. In CCN, content is divided into several
chunks, and when chunks are transferred, routers on the path
can cache these chunks. So content chunks in CCN can be
retrieved from several resources (e.g. routers, data base, etc.)
[1]. This makes simple implicit-feedback transport protocols
(e.g. TCP-Reno) not suitable for CCN, because there may be
multiple data sources in a transmission. In this paper, we
experiment and discuss the congestion control algorithms of
CCNx, and discuss the possibilities to use TCP-Reno like
congestion control and adaptive timeout in CCN. More
importantly, we propose to use multi-thread congestion control
in CCN according to its characteristics.

Keywords: Content Centric Network, Receiver driven
congestion control, Loss-based congestion control, Timeout,
Multi-thread congestion control

I. INTRODUCTION
CCN [1] has been proposed by Palo Alto Research

Center (PARC) to define the new Internet architecture
which focuses on named contents rather than IP addresses.
With CCN, several benefits (e.g., caching at each network
level which reduces congestion and delay, building security
at data level, and the mobility to switch to different nodes
during a communication) are provided. However, the
change of communication paradigm from IP to CCN poses
many problems (e.g., naming, routing, etc.).

II. BACKGROUND

A. Content Centric Networking (CCN)
In CCN, there are two kinds of messages: Interest and

Data, and both of them are identified by names. User
discovers data by sending an Interest message. Any node
having data, which satisfies the Interest, can respond with
Data (Content Object).

Because CCN provides in-network caching mechanism,
it helps to reduce the network load and delay significantly.
But this also challenges those node-based congestion
controls.

III. CONGESTION CONTROL OF CCN
Congestion happens when a link or node is carrying so

much data, and it can cause huge delay and packet loss. This
affects the bandwidth badly. So congestion control helps to

avoid or reduce congestions. In CCN, congestion is realized
following some basic rules [1]:

• One interest retrieves at most one data packet

• Interest packets serve the role of window
advertisements in TCP. Receivers can dynamically
vary the window size by varying the interests that it
issues to realize congestion control

Existing CCN prototype implementation CCNx [4] uses
timeouts to detect loss, both in the end-system and in routers.
And it implements its congestion control as in Table 1. The
expired time is default set to 4 seconds.

Figure 1 shows the window size changing under the
congestion control in Table 1. The transmission is done
between two nodes in LAN. Bandwidth is large enough to
satisfy the file transmission even if under its maximum
window size. And the average transmission bit rate is very
low due to roughly changing window size and also 4s’s
untimely reaction of timeouts.

It is actually not easy to set timeouts to a fixed value that
is small enough for timely reactions while avoiding false
alerts for packets that are simply delayed. So we want to
explore the possibilities of other congestion control
algorithms in CCN.

TABLE I. CCN CONGESTION CONTROL REALIZATION IN
CCNCATCHUNKS2

Algorithm: Congestion control in ccncatchunks2
At Up-Call arrival from the daemon:
If (it signals an EXPIRED interest)
 {current_window = 1;
 re-sent the expired interest;}
else if (it signals an OUT-OF-ORDER Data)
 current_window --;
else if (it is a regular Data && current_window <
MAXIMUM_WINDOW)

current_winodw ++;

* MAXIMUM_WINDOW <= 127
* hole-filling in ccncatchunks2 doesn’t function well now

Fig. 1. Window size changing with UDP connection between two nodes in
LAN using ccncatchunks2

A. Receiver-driven TCP-Reno like congestion control
This algorithm is TCP-Reno like algorithm, which

contains slow-start, congestion avoidance, fast retransmit,
and fast recovery. Unlike TCP-Reno, it is receiver-driven.
Receivers control the window size by controlling the sending
of the interests.

Comparing the window size changing between Figure 1
and Figure 2, CCNx congestion control has a higher
variability of the window size, while in case of Reno like
congestion control window size is comparatively more stable.
In general, it is better to have a stable window size rather
than a variable one. Because non-stable window size always
means non-stable throughput, and for some real time
streaming video services, this variability requires large de-
jitter buffer so decreasing the quality of experience.

B. Adaptive timeout
Another way to detect the packet loss and do

retransmission is to use proper timeouts of interest. In figure
1, we find it very difficult to set the timeouts to a fixed value.
So eRTT (estimated Round Trip Time) can be used as a
dynamic parameter to decide timeouts of each interest and
has a fast retransmission. Now we are still implementing this.

C. Multi-thread congestion protocol:
TCP-Reno like protocol is based on point-to-point

communication, so timeouts based on eRTT and fast
retransmission in TCP-Reno may not be appropriate for
CCN because data source change frequently, and CCN users
may retrieve Data chunks from a number of different
nodes/cache as shown in Figure 3.

To solve this problem, and make the Reno and adaptive
timeout more applicable to CCN, we propose multi-thread
congestion control in CCN.

User realizes congestion controls separately and
simultaneously for different data sources that contain
different chunks of a requested content. And in each received
chunk, information about remaining chunks in that source is
written to inform the user the timeouts for those remaining
chunks. Therefore, each data source will have its own
independent eRTT, and this is used for setting timeouts of
next requested chunk in that Data Source.

In Figure 4, we use an example to illustrate how multi-
thread congestion control works. Here user wants to retrieve
content with different chunks stored in two separate Data
Sources. At first, user sends interest for chunk 1, and the
window size is initially 1 and timeouts is large. Data source
A send back content 1 and telling user that I have remaining
chunks 3, 5, 8, 10…Then user sets a window size WA =2 for
data source A and get the eRTTA between data source and
user. After that, user sends interest 2 with large timeouts and
interests 3, 5 with timeouts based on eRTT. When chunk 2
(including information about source B’s remaining chunks: 2,
4, 6, 7, 9…) is received from data source B, user sets WB=2
for Data Sources, and calculate eRTTB between user and
source B. When interest 6 is expired, WB is adjusted and
interest 6 is retransmitted, but WA will not be influenced.

Fig. 2. Window size changing for Fig. 3.Users may retrieve chunks

TCP-Reno like congestion control	 	 of a data from several sources

Fig. 4. Example for multi-thread congestion control

By doing it this way, we can realize multi-thread

congestion control. And both Receiver Driven TCP-Reno
and adaptive timeout can be applied to CCN.

CONCLUSION

 This paper experiments and discusses the congestion
control in CCNx, and proposes the possibilities to use TCP-
Reno like congestion control and adaptive timeouts in CCN.
According to the characteristics of CCN that it may retrieve
data from multiple sources, we propose multi-thread
congestion control in CCN. And later, we will try to carry
out our experiments.

ACKNOWLEDGMENT
This paper has been carried out in the framework of

the FP7/NICT EU-JAPAN GreenICN project.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs, and R. L. Braynard, “Networking Named Content”, Proc.
ACM CoNEXT 2009, pp.1-12, 2009.

[2] Suphakit Awiphan, Takeshi Muto, Yu Wang, Zhou Su and Jiro
Katto “ Video Streaming over Content Centric Networking,
Experimental Studies on PlanetLab” ,ComComAP, Hong Kong,
China, April. 2013, pp.19-24

[3] Paolo VIOTTI, “Caching and Transport Protocols Performance in
Content-Centric Networks”, Master Thesis, September 2010

[4] CCNx Project, [Online], http://www.ccnx.org
[5] Stefano Salsano, Andrea Detti, Matteo Cancellieri, Matteo Pomposini,

Nicola Blefari-Melazzi, “Transport-Layer Issues in Information
Centric Networks”, ACM SIGCOMM Workshop on Information-
Centric Networking (ICN-2012), Helsinki, Finland , August 2012.

[6] L. Saino, C. Cocora, G. Pavlou, “CCTCP: A Scalable Receiver-
driven Congestion Control Protocol for Content Centric Networking”,
In IEEE ICC 2013 - Next-Generation Networking Symposium
(ICC’13 NGN), Budapest, Hungary, June 2013

